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ABSTRACT

An extension of the Bock-Samejima model for multiple choice items
.9.'

is introduced. The model provides for varying probabilities of the

response alternative when the examinee guesses. A marginal maximum

likelihood method is devised for estimating the item parameters, and

likelihood ratio tests for comparing more and less constrained forms

of the model are provided. Applications of the model are illustrated

with item response data for the word knowledge and 
general science I-e.

subtests of the Armed Services Vocational Aptitude Battery.
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3

A Response Model for

Multiple Choice Items

*-""In practical ability measurement, binary item response models haveA:

been applied routinely to data from multiple-choice tests with four or

five alternatives per item. To use the binary models, the data have

been dichotomized (correct and incorrect) and the distinct identity of

the incorrect alternatives has been lost. This procedure logically fol-
"lows the tradition of "scoring" a test by considering only the correct

answers; however, the binary models are incomplete as theories of the

item responses as useful information may be lost in the dichotomization.

It is possible to conceive of a unidimensional latent variable

model which completely explains the item response data, and several have

A. been proposed. The model which will be introduced here is an extension

.' of that proposed by Bock (1972) and subsequently extended by Samejima

(1979); a different parameterization of the same model has been

discussed by Sympson (1983). Bock (1972), Thissen (1976), Sympson

(1983), and Levine and Drasgow (1983) have shown that some increased

precision of measurement may be obtained when information in the incor-

rect alternatives on multiple choice tests is included in the item

response model. In a subsequent section, we will discuss this gain in

. information with a new model, as well as some attendant difficulties.

In the next section we will introduce the model and describe a workable

scheme for maximum likelihood estimation of its parameters.

.--
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4

The Model

The model for multiple-choice. items to be described makes heavy

use of the multivariate logistic transformation suggested as an item

response model by Bock (1972), so it is useful to begin with a clear un-

derstanding of that model. For m categorical responses, we specify m

response functions zk = ak8 + ck, each of which is a linear function of

the latent ability variable 8. Usually z would have a positive" correctw

slope and the other zk's would have lesser positive or negative slopes.

The linear functions describe one of the simplest possible relationships

between the response and 8. To make this a model for categorical item

responses, the zk (which lie on the real line) must be mapped into

[0,1]. This is accomplished by the multivariate logistic transforma-
.-. "

tion, so

exp(z h)
P(x =hl6;a,c) = (1)

Z exp(z k)
k-,m-

The function (1) is Bock's (1972) model for an item response, x=h, in

which h = 1,2,.. .m. for a multiple choice item j with m. (classes of)

response alternatives. The item parameters are the vectors a and c,

subject to two suitable linear constraints (see below), giving 2(m -1)

free parameters. The model described by (1) is moderately flexible, but

• .lacks flexibility in certain crucial respects at the extremes.

Specifically, one of the response alternatives must have the largest

positive value of ak; the trace line for that alternative is then

./. monotonic increasing. That may be theoretically acceptable, since it

%.,"

.e",*,- 
"
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Multiple Choice Items

is probably the correct response. However, another alternative must

have the largest negative value of ak (Zak=O is one of the linear con-

straints), and that alternative's trace line must be monotonic

decreasing. The latter aspect of the model is less acceptable: it im-

plies that as ability decreases the probability of selecting one par-

ticular incorrect response approaches unity, and all the others go to

zero. That is unlikely.

Samejima (1979) proposed a solution to this problem in a concep-

tual modification of Bock's (1972) model in which she added a completely

latent response category labelled "zero." Here, we will sometimes refer

to this category as "don't know" (DK). Lord (1982) has introduced a

similar conceptual entity which he describes by saying the examinee is

"(totally) undecided." In Samejima's model, DK is not an observed
',.

response, but a latent one, multi-logit-linearly dependent on a latent "

trait (giving two layers latent); the idea was that some proportion d.

(=I/m. in Samejima (1979)) "guessed" each of the observable response al-

ternatives and were "mixed in" with the examinees who chose those alter-

natives intentionally. So the model becomes

exp(z h) dh exp(z 0)
P(x =hj8;a,c,d) + ____

ex exp(zk)
k0O,m k=O,m

in which the second term adds a proportion d of those who "don't know"

into each trace line; call it P.(h) for future brevity:

exp(zh) + dh exp(z O)
". .5 P (h) = , (2)

.3 Y exp(z k)
kO, m-

'.:-'

• . . .. . - .4,. . . . . - % " . ' . .. . ' - . - . - .. , . - . ' .,



W-F W. -.WI. w r. . . . . . - -. ?.. .

Multiple Choice Items

0
..

'a.A

in which h takes the values 1,2,...m.. Samejima's (1979) model had two

more parameters than Bock's (1972) model: a0 and c0. In her presenta-

tion, the dh were fixed and equalled 1/mj; this represents the.3e

hypothesis that those of sufficiently low ability assign their responses

randomly with equal probability to each of the response alternatives.

We found that unlikely; later we will show that it is not empirically

the case. So we extend the version of the model given in (2) to allow

the d, h=1,2,...m. to be functions of estimated parameters.
h.3

Indeterminacies and Constraints

The model expressed in (2) has a number of indeterminacies and re-

quires the imposition of some constraints to become identifiable. The

linear constraints required on a and c,

Sak  = Ck =0

k O, mk k =-O, mk

are imposed by reparameterization

a= Ta A
aI

and

c Tj

where T is an (mj+l) x m. transformation matrix, and a and X are vec-

tors of free parameters of order mj; T is the transpose of that in Bock

(1972) throughout. There is a further indeterminacy with respect to the

sign of a; this is an indeterminacy of reflection of the latent variable

-d.11
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e which is logically identical to the rotational indeterminacy of common
factor analysis. The reflection indeterminacy is not explicity solved,

but rather the iterative solution of the likelihood equations is started -.-

with ah positive for h = the correct response; this is usually suf-

ficient to keep the estimated solution "right-side-up."

Since the vector d represents a set of m proportions, the dh must

be constrained to sum to unity and lie on the interval [0,1]. The dual

constraint is imposed in two parts. In the first, the same multivariate

logistic used in the model is also employed to make the dh proportions

from a set of psuedo-parameters dh*, which lie on the real line:

dh exp(dh*) / . exp(dkJ) (3)
k1l ,m.

The parameters dh* are on the real line, but like a and c, they must

satisfy Idk* = 0. So

d*,' = T26 (4)
-2-

in which T2 is an m. x (m.-1) transformation matrix of the same form as

T (above) but of lesser order, and 6 is a vector of length (m.-1) of

parameters which (through (4) and (3)) give the proportions dh. ...

So the set of free parameters for an item consists of m aks

("a-contrasts"), m. ¥k'S ("c-contrasts"), and (m -1) 6 kS

("d-contrasts"), for a total of 3m.-I parameters: 11 for a four-

alternative multiple-choice item.

The estimation system we use permits any of the elements of

fa,1 ,6} to be fixed at any constant value, or to be constrained to be

'

> V%- .- *-'-4 .-:.'-.'.--.-.... €?*.' * .'S% ): .'S? ? .?...-..* .2:2 L5i.. -"-



-. Jr T. W 9 . . . . . . . * * . *

.FU.

Multiple Choice Items

8

equal to any other parameter. With this facility, our model (2) in-

cludes the previous models hierarchically as subsets. If 6 is fixed at

0, than all the dh=1/mj and (2) becomes Samejima's (1979) model. If the

parameters a and co are fixed at zero, the dh become irrelevant (and

are deleted mechanically) and the model becomes Bock's (1972) model. In

our examples, we will compare the goodness of fit of all of these

models, as well as versions of (2) that include equality constraints on

particular parameters imposed across items.

The Relationship of the Model to Data

Models in item response theory (IRT) are intended to explain ob-

served covariation among test-item responses. Unidimensional "latent

trait" theories explain that covariation by appeal to an underlying la-

tent variable (usually denoted e) on which the probabilities of the

'9responses are functionally dependent. Each pair of item responses is

theorized to have non-zero covariance because the probability of both

item responses depends on 8. The models usually hold that e is the sole
.N9.

cause of covariation among the item responses; conditional on 6, the

item responses are theorized to be independent ("local independence").

A complete IRT model for the item response data for a multiple-

choice test in which n items each have m alternatives would be a model

for the covariation in the ma contingency table containing the counts

of respondents giving each response pattern. Such a 42 table for two

.;.;'Z -..

'9o

"..

,,,-'.. .
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four-alternative multiple-choice items is given in Table 1. .

Insert Table I About Here

Evidence thdt there is some information in the examinees' i rrect

choices is apparent (or at least can be found) in the covai ice in the4.

table. (The column percentages for the counts are given i ?-entheses

to aid in interpretation.) Alternative C is correct for iteh, /; respon-

dents who select C on item 2 are most likely to choose B on item 1; B

is correct, so that is double evidence of their high ability. But ex-

aminees who choose A or B on item 2 are more likely to respond correctly

to item 1 (36% and 34%) than those who pick D on item 2 (only 25%). A

possible explanation is that those who select A or B on item 2 are

higher on the ability continuum than are those who pick D. Even with

16 cells, this sort of argument may be lengthy, but the idea is that

wrong responses are related to each other; if the responses are locally

independent, this implies a relationship to "the trait."

.-. The goodness of fit of a multiple category IRT model to the data

in such a table may be evaluated with conventional likelihood ratio X2

statistics. For sets of data with more examinees than cells in the

table, the likelihood ratio test against a general multinomial alterna-

tive may be used. For larger tables (35 four-choice items gives a 435

table), there is no "general multinomial alternative"; but the

likelihood ratio test between hierarchically nested models still may be

* used to evaluate the significance of the additional parameters of the

S... .44

"A . ..-.- .- .. : ,.., .. '''% -- , .... ,,,,-% " .: ,:",'., . .. ' .... ... ,.. . . . . ..
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larger model.

Estimation

In general, the data for the estimation of the parameters ,

for each item j, j1,...,n consist of the counts of response patterns

r (where each x. may take values in [1,2,...mj]) in an mI x m 2 x... x

m contingency table like Table 1. The probability of observing a par-

ticular response pattern x when drawing an examinee from a population

in which 6 follows a distribution 0(8), assumed N(0,1) in the examples,

is

P(x) = I P (x.) 0(6) d (5)
- j=1,n

in which P (X.) is from equation (2).

The likelihood for the entire set of observed data is

L = C H P(x)rx (6)
x

in which C is a normalizing constant not dependent on the parameters,

and the product runs over all possible response patterns. In practice,

of course, for more than a handful of items the number of possible

response patterns is astronomical, and the "count" in each cell is one

or zero. In such cases, only those response patterns actually observed

need to be considered in the computation of (6), or (7), a function

proportional to the loglikelihood:

:<51
"-I

.-3:.-
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S r x logP(x) (7)
X

For a very small number of items (3 or 4; the parameters of the

full model are not identifiable with only 2 items, as there are fewer

cells than parameters), it may be possible to obtain the MLEs by

directly maximizing (7) with a Newton-type algorithm. Bock (1972)

reported such results for his original model with procedures similar to

those used by Bock and Lieberman (1970).

Bock and Aitkin (1981) described an extremely simple and elegant

algorithm for maximizing functions like (7) for binary models, and we

extend that algorithm to the estimation of multiple category models.

The Bock-Aitkin algorithm is a two-step procedure like the "EM-

algorithm" (Dempster, Laird, and Rubin, 1977), so we describe first the

"E-step" and then the "M-step." The procedure is iterative, and EM-pairs

are repeated until the process converges.

The E-step

The Bock-Aitkin algorithm is based on a discrete representation

of 0(6) and the integrand of P(x), both continuous densities, over Q

"quadrature points" 8q, with q=1,2, ...Q. Such a discrete representation

of the continuous densities may be made arbitrarily close to continuous

reality by choosing Q large, just as numerical integration may be made

arbitrarily accurate by using sufficient quadrature points. However,

large values of Q slow the computations; Q=10 over the range 6=-4.5 to

6=4.5 in unit steps seems to be sufficiently accurate and fast for many

applications and is used in all of the examples here.

-.

.... P.. ...4 4 4
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Under the assumption that the population is composed of in-

dividuals who are members of Q discrete "classes" with values e1, 82'

6.. Q on the latent variable, "complete data sufficient statistics"

for the estimation of the item parameters _, for item j would con-

sist of a table of counts R in which each element r* is the number
jkq

of individuals in class 8q selecting response alternative k on item j.

41 So the E-step of the Bock-Aitkin algorithm consists of computing the ex-

pected values of the rtkq, conditioned on the data and the current

provisional estimates of the item parameters.

Using provisional estimates of the item parameters for each item

(as starting values we use 6=0, X=, and ak=l for categories k which are

incorrect and a k=2 for category k correct), compute the elements of the

m. x Q table R.* containing:jJ
E(rtk Jdata;{&,j,3-) = I r [P(x;6 )/I P(x;G )] (8)(xin(x in q q

q

*in which t is the set of x in which x.=k and

P(X;eq) = r P.(x.)O(eq) (9)
q j1l,n J i

Note that, while (9) and (8) are computed in a (potentially long) loop

over the observed response patterns, the values P.(k) for each item from

i,: (2) are required only for a fixed set of Q values of . If those values

are placed in a table before the E-step is begun, the computations in-

volved in (8) and (9) are limited to table look-up, multiplication, and

addition. The E-step yields a set of n m. x q tables of non-integral

artificial "counts" which are used as data in the M-step.

:.:.:-:.
iI'.-.'U

,, . . . ...", 4
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The M-step

The M-step consists of maximum likelihood estimation of the

parameters , for all items j=1,2,...n, using the tables of ex--- <
pected values R." as data. It is simply nonlinear regression.

In terms of the "data" in R -*, the loglikelihood for item j is

t rk q  logP(k;6q) (10)
j k q

q q

in which P.(k;6q) is equation (2) evaluated at e8. Standard gradient*1 j q " --

methods may be used to maximize £. over the parameter space. The HLEs

of the parameters are obtained where
'-'%

=0

-' for all parameters in = Since for any set of parameters con-

strained by T such that K=Tc,

al.
.J = T J (1l)

F"-

we will state the required components of the gradient for the con-

strained parameters {a,c,d}; the gradients used to maximize (10) are

then given by (11). Further,

al. ?r'" 1 aP (k;q)"= k q jkq q ; (12)

F- P (k;eq) 8K
Sq

So what we really need are the derivatives of (2) with respect to a, c,

and d* (substitute all for K above). To write these, a useful bit of

* -S -•*

".. -...,.-,,% $,'..'..". ....,. .'....'.... ........... . .. ".........* . "-. .... * '." . ..... , .".. . .. "......'.... ,
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shorthand is

e* ek = exp(ak8 + ck)

which is always assumed to be evaluated at the appropriate value of 0;

all susations of ek are over categories k=O,1,...mn The elements of

the gradient (Ph is short for P.(h; q) hereafter) to be substituted in

(12), tbhen (11), and finally zeroed to maximize (10) are:

h = [(ek)edhe0  (e h h

0 k

aph [(Zek)eeh - (eh + dheO)eeh]

hk

ap h (ee

**" Ph - (k)dhe " (e + dheO)eO]

.--

'(1ek)eh - (eh + dheO)eh]

aPh -e hf

h C
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3Ph I k h

* iid (Idk*)W
h.k.k

The gradient does not simplify very much since the model is not

part of an exponential family. However, it is possible to locate the

maximum of . using these derivatives, and use the resulting set of
J .o

parameters in the next E-step. Our estimation procedure allows equality

constraints to be placed across as well as within items; this requires

some of the gradients to be accumulated across items, but causes no

serious problem beyond book-keeping. We use a conditioned Newton-type

algorithm (MINIM, described by Haberman, 1974) to locate the maximum of

(10); the conditioning is useful since the matrix of second derivatives

may be nearly singular for some items.

Convergence and Local Minima

Using the updated item parameters from the M-step, the sequence

. [E-step, M-step] is repeated until either a) the parameters stabilize

' or b) a fixed number of cycles is reached (we usually use 15 or 20).

The algorithm sometimes converges in the parameter space. More often,

it does not, but the lack of convergence causes no real problems. In

such cases, most of the parameters (and the loglikelihood) remain

roughly constant after ten or fifteen cycles, while a parameter (or a

few) change linearly and indefinitely. The changing parameter is fre-

quently a particular ak (and its associated Yk)' changing as the as-

" sociated ak rises toward a very high (possibly infinite) HISE. The dif-

ference in goodness of fit with such a slope high (3. to 5. or so) and

..

. . . . . . . . . . ... . .. .,. . . . . . . . .... . ... . . . .. 9._ , . ., . . . . '. ., %, % , w . • .
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much higher appears to be negligible, so there is no loss in simply

stopping the estimation procedure arbitrarily. In such a case, the
... trace line is fairly well-determined; but the numerical value of the as-

sociated ak is not.

A second case in which the parameters fail to clearly converge

arises with sk'S associated with ak' s near zero. The parameter ck

becomes ill-defined when ak is zero, and the associated k "wanders."
k Yk

Again, there is no loss of fit if the estimation procedure is stopped.

- The Bock-Aitkin algorithm may be speeded slightly using acceleration as

in Thissen (1982), but the value of the acceleration parameter should

be limited to about -1, which doubles the step-size at each cycle, to

avoid oscillation.

5-' The likelihood surface for the model clearly has more then one

"local" minimum. The indeterminacy with respect to reflection of e

gives two equal, identical modes. With poorly chosen starting values,

* the estimation procedure has located other (apparent) stationary points;

usually they seem to be located in a peculiar region corresponding to

some items using both reflections of e in the same solution -- these may

be modes or saddle points. Good starting values and the EML-like nature

of the Bock-Aitkin algorithm provide a solution in this case, because

E i-algorithms only climb local modes. If the algorithm starts near the

desired part of the likelihood surface, it will end there. It appears

that sensible starting values solve the problem.

The likelihood surface is multi-modal and may be ill-behaved,

producing parameter estimates that are sometimes undefined or are on the

.%

V e Z 
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boundary. The entire system begs for full Bayesian treatment, with a

prior distribution restricting the parameters to a reasonable part of

the space under all circumstances. At this stage however, it is not

clear what sort of prior may be appropriate. After some experience with

the model is gained beyond that in the examples which follow, we may be

in a position to specify reasonable parameters for a prior.

Alternatively, a different model, in the exponential family and

with a unimodal likelihood (preferably with similar properties to this

one in terms of fitting the data), would also solve all of these

problems. Such a model has yet to be proposed.

Characterizing 6

The parameter estimation described above usually has the goal of

-S "calibrating" a set of test items, after which the parameters are to be

. taken as known and used to characterize e for examinees who produce a

particular response pattern x. Given a set of item parameters, the

posterior density for 8 is

P(x;e) = n P.(x.w)(8) , (13)
j1l,n J

in which P.(x.) is from equation (2). If the model is correct, (13)

describes the distribution of examinees who respond with pattern x. It

can be characterized graphically, and two examples will be presented

below in Figure 5.

For more than a few items, (13) is roughly Gaussian in shape, and

so it may also be described by estimates of its location and spread. An

-........ ~* 2 ... -.-..
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extension of the procedure commonly used in binary IRT is to use the

mode as an estimate of the location of (13), where

alogP(x;e) alogP(xj;6 ) alogo(a)

38 j=l,n ae ae

is zero, with the variance approximated by the negative inverse of

a2logp(X;e)
E

The modal estimate is practical to compute as long as 6(6) is a

reasonable function, and easy if 0(8) is normal. There is no guarantee

that (13) is unimodal; for small numbers of items it is likely to have

more than one mode. Multimodality presents potential problems for

mechanical use of modal estimates.

However, it is also fairly straightforward to numerically in-

tegrate (13) to obtain its mean and variance. The mean has been called
%'--N

the "EAP" (Expected A Posteriori) estimate of 8 by Bock and Mislevy

(1982). An advantage of the EAP procedure over modal estimation is that

•:., the derivative of 0(8) is not required; therefore 0(6) may take any form

describable as a histogram with finite variance..-
','.'Examples

... To illustrate application of the model to item response data, we

have analyzed several subsets of items from the ASVAB Form 8A ad-

ministered to a national probability sample of youth by the National

Opinion Research Center; the data are described by Bock and Mislevy

' oa
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(1981). The data used here are from a 10% subsample of the NORC sample,
,. .,.

total N=1178. For'small illustrations of the performance of the model,

we use four-item subsets consisting of the last four items of the Word

Knowledge (WK) and General Science (GS) sections of the test. Four

items were used because, with roughly a thousand examinees, that is the

largest number for which the number of cells in the mn table is less

than N (44=256), so significance tests of the overall goodness of fit

of the model against a general multinomial alternative are feasible.

The last items were used because they are most difficult, giving the 4-.

trace lines more latitude to be fitted.

For the four-item examples, only examinees with complete data (no

non-response) for all four items were used. For GS, N=1048 and 214 of

the 256 cells of the table were filled (one of the 4 x 4 marginal tables

of this table makes up Table 1); for WK, N=976 and only 156 response

patterns were observed.

We also fitted several forms of the model to the entire set of 35

WK items, and a subset of 12 of the 25 GS items called "physical

science" hereafter. (The ASVAB "General Science" section consists of

about half biological and half physical science questions; we selected

a subset more likely to be unidimensional.) In these analyses, all ex-

aminees were used (N=1178) and non-response data to individual items

were ignored (not placed in any category).

• %
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Results

Table 2 gives suary goodness of fit results for the four-item

examples.

Insert Table 2 About Here

Bock's (1972) model and Samejima's (1979) modification are both rejected

at the p<0.05 level for both sets of data. The model called "ABCD" is

a form of (2) in which the vector 6 is estimated, but restricted to be

equal across items: this represents the hypothesis that a (c6nstant)

proportion of those who "don't know" select alternative A, a different

proportion B, and so on; but the distribution over A, B, C, and D

(regardless of the "correct" response alternative) is the same for all

items. For the WK data the model is a great improvement over Samejima's

6=0 model (G2=12.6 on 3 d.f.), and for GS it is not. The estimated vec-

tor d for WK for [A,B,C,D] is [.1,.2,.4,.3].

In the last four WK items, D is correct for the first and the last

and C is correct for the others; so to test the hypothesis that

(somehow) the correct alternative "attracts" guessing we tested

"ABCD(C),ABCD(D)" in which the two pairs of items had different vectors

6. This model fits the WX four-item data, and the improvement over ABCD

is significant (G2=10.6, d.f.=3, p<0.02); the parameter estimates are

given in table 3. The "saturated" version of (2), with 11 free

-" "
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parameters per item, does not fit the WK data significantly better.

Insert Tables 3 and 4 About Here

The last four GS items do not have such a convenient structure of

correct alternatives; but for these items "correctness" seemed more im-

portant than alternative position, so in the model "correct vs. incor-

rect" dh is constrained to be one value (the same for all items) for the

correct response and another for all the incorrect responses. This

model (barely) fits the GS data. The parameter estimates are given in -'

Table 4. Forty percent of the DK guess the correct alternative; there

is no evidence that this varies across items (The last line of Table 2

gives the G2 for "correct vs. incorrect each item").

When the complete WK data are fitted, the likelihood ratio test

against a "general multinomial alternative" for the 1178 observations

in a 435 table is, of course, meaningless. Nevertheless, we report 'S

likelihood ratio tests between variously constrained versions of the

model. The Samejima (1979) model is the most constrained form that we

use for comparison. A model of the "ABCD" form of (2), in which 6 is

estimated, equal across items, gives a reduction G2=41 on 3 d.f.,

S...* p<0.001; the estimate of d was [.2,.3,.3,.2] for [A,B,C,D]. As with the

four-item WK, a model in which 6 is constrained to be equal only among

" items with the same (letter) correct response fits significantly better:

G2=72 on 9 d.f., p<0.01. No more complex models were considered, as

estimation of 11 parameters per item for the very easy items (to which

'.. 4.
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the majority of examinees responded correctly) would be estimating many

". ~.parameters with little data. The estimated parameters for the last four

A items obtained in the analysis of the entire WK set are given directly

below their values for the four-item estimation in Table 3.

Analysis of the physical science portion of the GS section gave

similar results: (2) in its "ABCD" form fitted significantly better than

Samejima's model, G2=29 on 3 d.f., p<0.01. The estimate of d was again

(.2,.3,.3,.2I. And the model in which d varied according to the letter-

- value of the correct alternative was better: G2 = 26 on 9 d.f., p<0.01.

Two of the items in the "physical science" set are among the last four

GS items, and their parameter estimates are given in Table 4.
...

Discussion

In cases in which the fit can be tested -- with a thousand ex-

aminees and four-alternative items, four items -- some forms of the

model given by (2) and (5) fit item response data satisfactorily. This

represents a major step forward in item analysis, because it is no

longer necessary to look at deviations from the fit to examine items;

-we may examine the fit itself.

Insert Figure I About Here

The solid curves in Figure 1 illustrate the trace lines for the

"physical science" fit to GS item 23, which is item 2 in Table 1,

discussed above. From Table 1 we inferred that those who -ho'- A or B

• '..
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might be more able than those who chose D. Indeed, the trace line for 0

D restricts that response to thos-, with values of e<0 for all practical

purposes, while B-responses come mostly from those with 0>0, and A is

spread all over. The DK trace line indicates that most of those below

e=-.5 have no idea; and more of them guess correctly than any other way.

The dashed curves in Figure 1 illustrate the trace lines for the

"four-item" fit to item 23. Note in Table 4 that the parameter

estimates differ a great deal, but the solid and dashed trace lines in

Figure 1 differ much less (except for DK) in the middle. DK is a com-

pletely inferred latent response and is not really very well-defined by

four items. The other curves are more similar in the middle, where the

data are; 95% of the population distribution lies between 6s of -2 and

+2. The different parameter estimates seem to affect the curves

primarily at the extremes.

Unlike algorthms which make use of point-estimates of 0 in the

estimation of item parameters, and require both large numbers of ex-

aminees and large numbers of items, the MML estimation procedure used

here should be consistent considering the number of examinees alone if

the model is correct. That is, as the number of examinees becomes large

the estimates for four items or 12 or 35 should all converge to the true

values. So the dashed and solid lines in Figure 1 should be the same.

They are very similar, and there are three possible reasons for the

small differences observed between them. First, one thousand examinees

may easily not be "asymptotic" for a table with 256 cells. Second, one

or the other solution may not be completely converged; EM-algorithms can

. "-.-_
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be slow near the maximum. Third, and most likely, the model may be in-

".-- correct in that the latent dimension a may be defined slightly dif-

ferently by the most difficult four items than by the entire test.

------

Insert Figure 2 About Here
',

Figure 2 similarly illustrates the four-item and complete test
* 4q

estimates of the trace lines for WK 32, which demonstrates this effect

more graphically. With estimates from the entire test, DK goes to unity

for low e. But the four-item (dashed) curve for DK rises for moderately

low 8 and then goes back down, and A goes to unity for low 8. That

can't be right; but it is all happening in the region below 6=-2, where

there are essentially no data and the model is extrapolating. Ex-

trapolation is bad: the model is too flexible at the extremes. Flex-

ibility was one of the goals of the model, but it seems we may have

overdone it. This is in marked contrast to traditional IRT models which

go to unity, zero, or some asymptote at the extremes, and never mis-

behave there. Note that even with all of this strangeness, the other

[- trace lines in Figure 2 are essentially identical between es of -2 and

+2.

Insert Figure 3 About Here

Figure 3 shows the trace lines for the correct responses only for

.W items 32-35 from the four item set and the whole test, as well as

0.

i -- -- """". "-:-"'- :" ', '--"-"- "-"."-""-" - """ "'"- :
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traditional 3-PL curves estimated for the entire test (dotted lines) for

comparison. If the "tail-wagging" to the left of 8=-2 is ignored, the

pairs of curves for the whole test are nearly identical and the four-

item curves are somewhat deviant. That may be capitalization on chance

in four items -- or it may be that 8 differs mildly in the hardest items

of the test from its definition in the entire test. None of the curves -

are extremely different.

Insert Figure 4 About Here

For WK as a whole, the usual result (of Bock, 1972; Thissen, 1976)

is obtained with respect to test information: Figure 4 shows the infor-

mation curves for the multiple category scoring and the binary scoring

(3-PL). For 8<0, information from incorrect responses increases total

information by about 50%, equivalent to extending the test (for half the

examinees) from 35 to 50 items.

Insert Figure 5 About Here

Figure 5 illustrates the process. The solid curves show the trace

lines associated with a particular set of responses [B,B,B,BI, all in-

correct, for the last four WK items. Then the N(0,1) population

distribution is plotted with the the product of all five curves, or

posterior density, labelled "Total." The mode of that density is

traditionally 8; it is about -0.7 (s.e.=0.6) in this case. The dashed

" A
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curves show the 3-PL trace lines, all incorrect, so they are all 0

monotonic decreasing. That is not very informative; the (dashed)

posterior is broader (s.e.=0.7) and closer to zero (6=-0.5) because

there is less information so the estimator is "shrunk" more toward the

mean of the population distribution. If the model approximates the

world reasonably well, the multiple category scoring gives more informa-

tion about people responding [BBBB] than can 3-PL.

General Discussion

The model proposed here provides the first practical, complete IRT

item analysis for multiple choice tests, describing the performance of

all of the response alternatives as functions of the trait being

measured. The parameters of the model are not readily interpretable for

the most part, but graphical presentation of the trace lines and/or

their products with the population distribution gives thorough item

analysis which has much to recommend it.

This sort of item analysis is sufficiently flexible that "bad"

trace lines are fitted. These can then be observed and such items

modified or eliminated in the course of empirical test development.

That is not possible, in general, with simpler models which require ex-

amination of the residuals to find bad items. For item analysis, the

mcdel of (2) and (5) is clearly an excellent choice; for scoring tests

(aka "estimating s") matters are more complicated.

Non-monotonic trace lines for the correct response have become a

popular feature of recent IRT developments: Lord (1982) and Choppin

',-.- ..-A



Multiple Choice Items

27

(1983) have proposed item response models which permit "low-ability" 0

non-monotonicity, in work on binary models independent from Samejima' s

(1979) multiple category proposal. There are a number of possible ex-

planations for non-monotonicity on the left, as for the correct response

in Figure 1. The only requirement for candidacy as an explanation for

the effect is that it must account for "getting the right answer for the

wrong reason." Bock (personal communication, 1983) suggests a name for

the phenomenon: "positive misinformation."

Two sources of positive misinformation come to mind. The first

is that the correct response for a particular item differs from the

distractors on dimensions other than that which is intended and ob-

servable, given sufficient ability. Examinees of medium and high

ability perceive the features and attempt the processing intended by the

item-writer, while examinees of low ability see other features of the

alternatives which cause them to select the correct one. These "other

features" may be effectively "invisible" to individuals of higher

ability, and therefore to the item-writers as well.

A second possible cause of non-monotonicity in the correct trace

line is cheating. If low-ability individuals cheat (e.g., by copying

a neighbor's answer, which is more likely to be correct than not for

most items), then the resulting correct alternative trace lines will

rise for those of very low ability.

It may also be possible that non-monotonic trace lines are estima-

tion artifacts in small sets of items (like four). It may be that, with

few monotonic correct-alternative trace lines to "orient" e, the estima-

- . -. A.
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tion procedure could "wrap around" and (effectively) place some of the

high ability individuals on the left end of the 6-continuum. But this

explanation can be discounted with longer tests, as the non-monotonicity

there comes from correct response to an item being more likely from ex-

aminees who get most of the other items wrong than from those who get

fewer of the other items wrong.

Distinguishing among these possibilities would require experimen-

tation with the items and the testing situation. The model does,

however, offer an item analysis which permits such phenomena to exhibit

themselves in the fit, when they are present.

So the use of non-monotonic curves in item analysis may be re-

quired to fit the observed data. However, the use of non-monotonic

trace lines in constructing the posterior density, a measure of the cen-

tral tendency of which is to be called 8 and used to "score the test",

gives rise to many potential problems. If the correct response trace

line for item j is non-monotonic on the right (e.g., it turns down),

then examinees with some response patterns on the other items will be

"penalized" by responding correctly to item j; they would have been as-

, signed a higher 8 if they had selected certain of the incorrect alterna-

tives. Correct response trace lines which are non-monotonic on the left

similarly "penalize" examinees of low ability who respond correctly. As

measurement, this is all probably satisfactory: conditional on the

other item responses, a correct response to item j may not imply higher

ability; it may be more likely to be guessing or cheating. But this may was

be a problem for the test "as contest." Further, it might be difficult

::::.
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to defend such a method of test scoring against the onslaught of members

of the bar before a jury. A case can, therefore, be made for either a)

rejecting the model or b) rejecting the use of items with non-monotonic

trace lines for the correct response.

Multiple category scoring of this nonlinear sort has certain

bizarre properties even if non-monotonic trace lines are eliminated.

For certain regions on the e-continuum, selecting a particular incorrect

response will increase e more than would selecting the actual correct
response. For instance, in the Word Knowledge item in Figure 2, for e
just below -1, selecting response B will increase e more than would
selecting the correct response. But for 8 around 1, selecting B will

"penalize" the respondent! The contingencies are sufficiently complex

that it is unlikely that the examinees could find a strategy to take ad-

vantage of the system. But the possibilities for legal difficulties are

considerable under circumstances in which the test and scoring system .

must be disclosed. On the other hand, the quality of measurement for

research purposes and in non-disclosed tests should be improved by these -"

"bizarre" features; that is, after all, where the multiple category

model obtains its additional information.

Conclusion

Item response models for multiple choice items have come of age:

they fit the data. Questions remain about uses for these models. They

produce excellent item analysis, but it is complex and best-represented

e graphically -- that breaks with the tradition of item analysis with a

z"'
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few numerical summaries. Multiple category scoring clearly increases "

the information obtained in scoring a test-- but again at the cost of

complexity, and, potentially, controversy. The validity of test scored

with such methods has not been examined here, nor can it be with inter- .

nal consistency data in any event. Consideration of all of these

matters is deferred to future work.

--p
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Table 1.

Cross classification of responses to two items (22 and 23)

of the ASVAB Form 8A General Science subtest for 1048 examinees

of the NORC national probability sample (Bock and Mislevy, 1981).

Item 2

A B C" D

",.

A 20(22) 107(23) 79(22) 44(31) 250

-S.-

1 C 7( 8) 36( 8) 24( 7) 19(14) 86

D 30(3) 1610(3) 112(31) 42(30) 345

89 461 358 140 1048

K.'[

*Correct;

Column percentages in parentheses.

I-V
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LP

Table 2.

G2 values for selected models for the

four-item examples.

Word General

Knowledge Science

Model d.f. G2  p G2  p

Bock (1972) 231 307 <.01 277 <.02

Samejima (1979) 223 271 <.02 264 <.05

"ABCD" 220 258 <.04 262 <.02

A B C D ( C ) ,A B C D (D ) " 2 1 7 2 4 8 m> .0 5 - - -.-

"11 per item " 211 245 < .05 ---..

"Correct vs. incorrect" 222 ---. 253 =.05

"Correct vs., each item" 3 -- . 253 =.05

.

.
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Table 3. 
-0

Estimated parameters for the last four Word Knowledge items.C-1

Estimates for four items above, whole test below.

Parameters for correct response underscored.

Response

DK A B C D

Item
32 ak -1.1 -2.9 1.5 0.2 2.2

-1.7 -1.0 1.1 0.3 1.9
ck 0.1 -3.8 2.9 -1.9 2.70.3 -2.3 2.4 -2.5 2.1
dk 0.1 0.2 0.3 0.4

0.25 0.25 0.25 0.25

33 ak  -3.0 -0.3 1.2 2.8 -0.7-2.1 -0.6 1.2 2.3 -0.8
Ck 0.1 0.6 -1.6 0.1 0.:-.2.1 0.5 -3.0 -07.-T. 1.0 "d 0.2 0.2 0.5 0.1
-""0.2 0.2 0.4 0.2

34 ak  -0.8 -1.8 -0.1 1.9 0.7
-1.3 -0.9 -0.2 1.9 0.5

" -1.6 -3.2 0.2 2.6 2.0S-0.9 -2.5 -0.1 1.8 1.6
d 0.2 0.2 0 0.1
k,0.2 0.2 0.4 0.2

35 ak  -1.6 -0.4 -0.2 -0.8 3.0
-1.9 o.5 0.0 -0.6 T.9

C k 0.0 -1.3 o.4 0.4 0.5
-0.1 -2.0 0.5 0.8 0.8

dk 0.1 0.2 0.3 0.4
0.25 0.25 0.25 0.25

I,-..-C."

C', ,%C

S .
.J

-':,--2-
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Table 4. 0

Estimated parameters for the last four General Science items.

Estimates for four items above, "physical science" subset below.

Parameters for correct response underscored.

Response

DK A B C D

Item
22 ak -2.3 -0.2 2.0 0.9 -0.3

ck 0.5 0.7 -0.5 -1.9 1.-

kd dk  0.2 o.4 0.2 0.2 "

23 ak -0.8 0.6 -0.5 1.1 -0.4
-4.0 1.2 1.1 2.5 -0.9

ck 1.6 -2.8 1.5 0.0 -0.3
-0.8 -0.7 1.4 0-.2 -0.1

d 0.2 0.2 0-4 0.2k 0.2 0.3 0.3 0.2

24 ak -0.5 -0.2 2.0 -1.2 0.0
-3.3 0.2 2.6 -0.1 0.5

ck -0.3 0.7 -1.0 0.7 0.0
-1.8 1.1 -1.0 1.4 0.2

dk  0.2 0.4 0.2 0.2
0.2 0.- 0.2 0.2

25 ak -1.5 -0.7 -0.2 0.1 2.3 U.

Ck 0.4 0.4 -0.5 0.5 -0.8 ,-.

dk 0.2 0.2 0.2 0.4

4k -

%. . . .-. . "." . . , o." "--.-.-. . - " . .. " .' " ." .. •.• .. ' . .. ' .' . ",... ... ,.,,.,.. ".. .". ,
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Figure Captions

Figure 1. Five panels showing P(k), k=0,1,...,m. as a function of

6; the solid lines correspond to the probabilities for DK, and responses

A,B,C, and D for GS item 23, estimated as part of "physica' science."

The dashed curves use the estimates obtained with the last four items.

Figure 2. Five panels showing P(k), k=O,1,...,m. as a function of

6; the solid lines correspond to the probabilities for DK, and responses

A,B,C, and D for WK item 32 estimated in the entire test. The dashed

curves use the estimates obtained with the last four iems.

Figure 3. Four panels show three alternative fits of the trace

line for the correct responses for the last four WK items: dots are on

the standard 3-PL curve, the solid line is the model of the present

paper fitted with the entire test, and the dashed line is the present

model fitted with only those items.

Figure 4. Test information curves for binary (dotted line) and

multiple category (solid line) scoring for WK, as functions of 6.

Figure 5. The solid lines give the trace lines from the present

model and posterior density (labelled "Total") for response pattern

[BBBB] (all incorrect) for the last four items of WK.. Dashed lines give

the corresponding curves for the same response pattern using 3-PL

estimates.

d -'
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